skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Surleta, Thomas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Simpson, Isla; Waugh, Darryn (Ed.)
    Abstract Surface air temperatures in the southeastern United States that did not change from the climatological mean from 1900 to 2000 have increased since the year 2000. Analyzed herein are factors modulating the surface air temperatures in the region for a 20-yr period (2000–19) using space- and surface-based observations, and output from a reanalysis model. The 20-yr period is segregated into two decades, 2000–09 and 2010–19, corresponding to different tropospheric chemical regimes. Changes in seasonal and decadal averages are examined. The later decade experienced higher average surface air temperatures with significant warming during summer and fall seasons. Decadal and seasonal averages of cloud properties, column water vapor, rain rates, and top-of-atmosphere outgoing longwave radiation did not exhibit statistically significant differences between the two decades. The region experienced strong warm and moist advection during the winter months and very weak advection during the summer months. The later decade exhibited higher low-level moisture advection during the winter months than the earlier decade with insignificant changes in the temperature advection between the two decades. The later decade had significantly lower aerosol dry and liquid water mass during all seasons, along with lower aerosol optical depth, higher single scattering albedo, and lower top-of-the-atmosphere outgoing shortwave radiation during cloud-free conditions in the summer season. Collectively, these results suggest that changes in the aerosol direct radiative forcing are responsible for warming during summer months that experience weak advection and highlight seasonal differences in the temperature controlling mechanisms in the region. 
    more » « less